Recitation 6: Series Solution of ODE (II)

Lecturer: Chenlin Gu

Exercise 1. Classify the following equation at x_0 and x_1 (ordinary, regular singular, irregular singular).

- 1. $x^{100}y'' + 2y' + 5y = 0, x_0 = 0, x_1 = 1;$
- 2. $\cos(x)y'' + e^xy' + 21y = 0, x_0 = 0, x_1 = \frac{\pi}{2};$
- 3. $x^2y'' + \sin(x)y' + 6y = 0, x_0 = 0, x_1 = 1.$

Exercise 2. Determine the radius of convergence (or give a lower bound) for series solution $y = \sum_{n=0}^{\infty} a_n x^n$ for the following equation. Justify precisely your answer.

- 1. y'' + y = 0;
- 2. $(4-x^2)y'' + x^2y' + y = 0;$
- 3. $(8+x^3)y'' + \sin(x)y' + (3+x^2)y = 0.$

Exercise 3. Determine the general solution of the given differential equation that is valid in any interval not including the singular point.

- 1. $x^2y'' + 4xy' + 2y = 0;$ 2. $x^2y'' - 3xy' + 4y = 0;$
- 3. $(x-2)^2y'' + 5(x-2)y' + 8y = 0.$

Exercise 4. Determine the indicial equation for each regular singular point.

1.
$$x^2y'' + \frac{1}{2}(x + \sin x)y' + y = 0;$$

2. $x^2y'' + 2xy' + 6e^xy = 0.$

Exercise 5. Let $a_1 = a_2 = 1$ and and $a_{n+2} = a_{n+1} + a_n$, $n \in \mathbb{N}$. This is the Fibonacci sequence. Let us find an explicit expression for a_n , $n \in \mathbb{N}$. Define $f(x) = \sum_{n=1}^{\infty} a_n x^n$.

- 1. Show that the power series has a positive radius of convergence.
- 2. Show that $f(x) = \frac{x}{1-x-x^2}$.
- 3. Write power series expansion for f(x) and give the explicit value of a_n .