Recitation 6: Series Solution of ODE (II)

Lecturer: Chenlin Gu

Exercise 1. Classify the following equation at x_{0} and x_{1} (ordinary, regular singular, irregular singular).

1. $x^{100} y^{\prime \prime}+2 y^{\prime}+5 y=0, x_{0}=0, x_{1}=1$;
2. $\cos (x) y^{\prime \prime}+e^{x} y^{\prime}+21 y=0, x_{0}=0, x_{1}=\frac{\pi}{2}$;
3. $x^{2} y^{\prime \prime}+\sin (x) y^{\prime}+6 y=0, x_{0}=0, x_{1}=1$.

Exercise 2. Determine the radius of convergence (or give a lower bound) for series solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ for the following equation. Justify precisely your answer.

1. $y^{\prime \prime}+y=0$;
2. $\left(4-x^{2}\right) y^{\prime \prime}+x^{2} y^{\prime}+y=0$;
3. $\left(8+x^{3}\right) y^{\prime \prime}+\sin (x) y^{\prime}+\left(3+x^{2}\right) y=0$.

Exercise 3. Determine the general solution of the given differential equation that is valid in any interval not including the singular point.

1. $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$;
2. $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$;
3. $(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0$.

Exercise 4. Determine the indicial equation for each regular singular point.

1. $x^{2} y^{\prime \prime}+\frac{1}{2}(x+\sin x) y^{\prime}+y=0$;
2. $x^{2} y^{\prime \prime}+2 x y^{\prime}+6 e^{x} y=0$.

Exercise 5. Let $a_{1}=a_{2}=1$ and and $a_{n+2}=a_{n+1}+a_{n}, n \in \mathbb{N}$. This is the Fibonacci sequence. Let us find an explicit expression for $a_{n}, n \in \mathbb{N}$. Define $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.

1. Show that the power series has a positive radius of convergence.
2. Show that $f(x)=\frac{x}{1-x-x^{2}}$.
3. Write power series expansion for $f(x)$ and give the explicit value of a_{n}.
